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We present the data assimilation approach, which provides a framework for combining observations and 
model simulations of the climate system, and has led to a new field of applications for paleoclimatology. The 
three subsequent articles explore specific applications in more detail.

Data assimilation involves the combi-
nation of information from observa-

tions and numerical models. It has played 
a central role in the improvement of 
weather forecasts and, through reanalysis, 
provides gridded datasets for use in cli-
mate research. There is growing interest in 
applying data assimilation to problems in 
paleoclimate research. Our goal here is to 
provide an overview of the methods and 
the potential implications of their applica-
tion.

Understanding of past climate vari-
ability provides a crucial benchmark ref-
erence for current and predicted climate 
change. Primary resources for deriving 
past understanding include paleo-proxy 

data and numerical models, and studies 
using these resources are typically per-
formed independently. Data assimilation 
provides a mathematical framework that 
combines these resources to improve the 
insight derivable from either resource in-
dependently. The three articles that fol-
low describe the current activity in this 
emerging field of study: transient state 
estimation (Brönnimann et al., this issue), 
equilibrium state estimation (Edwards et 
al., this issue), and paleo data assimilation 
for parameter estimation (Annan et al., 
this issue). Here we provide an overview 
of these methods and how they relate 
to existing practices in the paleoclimate 
community.

In weather prediction, data assimilation 
uses observations to initialize a forecast 
(Lorenc 1986; Kalnay 2003; Wunsch 2006; 
Wikle and Berliner 2007). Since the short-
term forecast typically starts from an accu-
rate analysis at an earlier time, called the 
prior estimate, the model provides rela-
tively accurate estimates of the weather 
observations. Data assimilation involves 
optimizing the use of these independent 
estimates to arrive at an analysis (i.e. esti-
mate of the weather or climate state) with 
a smaller error than the model short-time 
forecast or the observations.

For Gaussian distributed errors, the 
result for a single scalar variable (singly-
dimensioned variable of one size), x, given 
prior estimate of the analysis value, xp, and 
observation y is

				      (1)

where xa is the analysis value. The inno-
vation, xxxxxxxxx, represents the infor-
mation from the observation that differs 
from the prior estimate. This comparison 
requires a “conversion” of the prior to the 
observation, which is accomplished by xx. 
For example, in a paleoclimate applica-
tion, xxxxx may estimate tree-ring width 
derived temperature data from a climate 
model (Fig. 1).

The weight applied to the innovation 
is determined by the Kalman gain, K, 

				       (2)

where cov represents a covariance. The 
error variances associated with the ob-
servation and the prior estimate of the 
observation are given by σp and σy , re-
spectively. Equation (1) represents a linear 
regression of the prior on the innovation 

Figure 1: Schematic illustration of how the innovation is determined in data assimilation for a tree-ring example. 
Proxy measurements are illustrated on the left, and model estimates of the proxy on the right. The observation 
operator provides the map from gridded model data, such as temperature, to tree-ring width, which is used to 
compute the innovation. Images credit: Wikipedia.
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(the denominator of K is the innovation 
variance). Equivalently, the Kalman gain 
weights the innovation against the prior, 
resulting in an analysis probability density 
function with less variance, and higher 
density, than either the observation or the 
prior (Fig. 2, red solid line, dashed green 
line and dashed blue line respectively). 
Generalizing (1) and (2) to more than one 
variable is straightforward, with scalars 
becoming vectors and variances becom-
ing covariance matrices (for details see 
Brönnimann et al., this issue). These cova-
riance matrices provide the information 
that spreads the innovation in space and 
to all variables through a Kalman gain ma-
trix.

Application of data assimilation to 
the paleoclimate reconstruction problem 
involves determining the state of the cli-
mate system on the basis of sparse and 
noisy proxy data, and a prior estimate 
from a numerical model (Widmann et al. 
2010). These data are weighted according 
to their error statistics and may also be 
used to calibrate parameters in a climate 
model (Annan et al. 2005).

Relationship to established 
methods
While there are similarities between 
the application of data assimilation to 
weather and paleoclimate, there are also 
important differences. In weather predic-
tion, observations are assimilated every 6 
hours, which is a short time period com-
pared to the roughly 10-day predictabil-
ity limit of the model. However, transient 

state estimation in paleoclimatology in-
volves proxy data having timescales of 
years to centuries or longer, which gener-
ally exceeds the predictability of climate 
models, which are on the order of a de-
cade. Consequently, relative errors in the 
model estimate of the proxy are usually 
much larger in paleoclimate applications. 
Hoever, data assimilation reconstruction 
may still be performed, at great cost sav-
ings, since the model no longer requires 
integration and each assimilation time 
may be considered independently (Bhend 
et al. 2012).

Paleoclimate data assimilation at-
tempts to improve upon climate field 
reconstructions that use purely statisti-
cal methods. One well-known statistical 
approach for climate field reconstruction 
(Mann et al. 1998; Mann et al. 2008) in-
volves limiting field variability to a small 
set of spatial patterns that are related to 
proxy data during a calibration period. 
Data assimilation, on the other hand, 
retains the spatial correlations for loca-
tions near proxies, which may be lost in 
a small set of spatial patterns, and also 
spreads information from observations in 
time through the dynamics of the climate 
model. Another distinction between data 
assimilation and field reconstruction ap-
proaches concerns the observation op-
erator, xx, which often involves biological 
quantities of proxy data that have uncer-
tain relationships to climate. Statistical re-
constructions directly relate proxy data to 
the set of spatial patterns, which is essen-
tially an empirical estimate of the inverse 

of xx, and therefore subject to similar un-
certainty.

Current and future directions
Research on paleoclimate data assimila-
tion is rapidly developing in many areas. 
For climate state estimates, a wide range 
of methods are currently under explora-
tion (see Brönnimann et al., this issue), in-
cluding nudging climate models to large-
scale patterns derived from proxy data 
(Widmann et al. 2010), and variational 
(Gebhardt et al. 2008) and ensemble ap-
proaches (Bhend et al. 2012). Ensemble 
approaches involve many realizations of 
climate model simulations, each of which 
is weighted according to their match to 
the proxy data, either in the selection of 
members (Goosse et al. 2006) or through 
a linear combination.

Among the important obstacles to 
progress in paleoclimate data assimila-
tion, some challenges are generic, such 
as improving the chronological dating 
quality of proxy records and reducing the 
uncertainties of the paleoclimate data. 
Other problems are more specific to data 
assimilation, such as the development of 
proxy forward models. Moreover, proxy 
data typically represent a time average, in 
contrast to instantaneous weather obser-
vations, although solutions that involve 
assimilating time averages have been pro-
posed to tackle this problem (Dirren and 
Hakim 2005; Huntley and Hakim 2010). 
Model bias is also problematic for paleo-
climate data assimilation, especially for 
regions with spatially sparse proxy data.

While the field of paleoclimate data 
assimilation is still in its infancy, these 
challenges are all under active research. 
Merging climate models and proxy data 
has a bright future in paleoclimate re-
search (e.g. the P2C2 program of the U.S. 
National Science Foundation), and it is 
likely that paleoclimate data assimilation 
will play a central role in this endeavor.
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Figure 2: Data assimilation for scalar variable x assuming Gaussian error statistics. Prior estimate, given by the 
dashed blue line, has mean -0.25 and variance 0.5. Observation y, given by the dashed green line, has mean 1.0 
and variance 0.25. The analysis, given by the thick red line, has mean 0.58 and variance 0.17. The parabolic gray 
curve denotes a cost function, J, which measures the misfit to both the observation and prior; it takes a minimum 
at the mean value of xa. From Holton and Hakim 2012.


